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Abstract—This paper presents an incremental learning ap-
proach for estimating the structural parameters in stochastic
state-based models (SSMs). SSMs have proven to be useful
for modelling biological and medical processes, as they can
represent both time dependency and stochastic processes. A
major challenge in modelling in bioinformatics is that learning
processes usually rely on large publicly accessible databases. In
this work, a new approach is presented, where models are trained
incrementally locally at different data sources, e.g., hospitals,
without having to pass on sensitive data. After learning, only
the parameters of the model are passed on, in this case the
arc weights of stochastic Petri nets. As a result, data protection
and privacy of patients in hospitals are respected and it is no
longer necessary to rely on the existence of a suitable accessible
database. Simulations are used to evaluate the performance of
the algorithm for a gene regulatory network.

Index Terms—Bioinformatics, incremental learning, federated
learning, stochastic state-based models

I. INTRODUCTION

Sepsis is the leading cause of death in intensive care
worldwide [1]. The diagnosis and treatment of sepsis is a
challenging task for physicians.

For this reason, a lot of research has been done recently
on automatic recognition and therapy management. Due to
many vital signs and laboratory values available from patients
in intensive care units, this can be considered a typical task
for machine learning. A prominent example is the Artificial
Intelligence Clinician presented by Komorowski et al. [1].

The usual procedure for obtaining data is that individual
projects collect data from selected hospitals, process it, make
it anonymous and then publish it. The probably best known
such published database is MIMIC-III [2]. The publication
of such databases makes it possible to find machine learning
solutions for medical applications, which require a large
amount of training data. However, being dependent on such
databases also has disadvantages. On the one hand, they do not
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necessarily contain enough different patients, so that cohorts
with special required characteristics are simply too small. On
the other hand, there may be shortcomings in the quality and
quantity of the entries. Furthermore, the data is not always
sorted and standardised to the desired extent. This can result
in the data required for a particular task being entered into
the database at insufficient frequency or in an inappropriate
manner. Another major problem is that the EU’s General Data
Protection Regulation [3] makes it difficult to publish such
databases containing sensitive data.

In this paper, we therefore use the approach of federated
learning, which has been explored intensively in recent times
and is not based on publicly accessible databases. A detailed
overview of federated learning was presented by Yang et al.
[4]. The authors state that they expect that the smart healthcare
sector will benefit greatly from federated learning. Google
proposed federated learning as an approach to build models
using machine-learning on data that is distributed among
different devices [5]–[7], which demonstrates the relevance of
this approach also to the Internet of Things. In [8], a system
is presented which allows several parties to learn a neural
network without sharing the input data. In a series of publica-
tions, Ohno-Machado and her team have shown that federated
learning is also ideally suited for medical applications taking
into account privacy and data security aspects [9]–[13].

In this work, we have adapted the concept of federated
learning to our needs and present a new algorithm for learning
the structural parameters of a stochastic state-based model in
the biomedical domain using distributed data sets. The general
procedure is as follows. The first step is to determine what
data is required for a particular task and in what form it
should be available. This data is then collected directly in the
hospitals in the required manner and used to train a model.
Unfortunately, as mentioned before, high data protection and
privacy regulations make this practically impossible, as patient
data cannot simply be shared. For this reason, we present a
procedure that makes the sharing of patient data no longer
necessary by only using measured data locally in one hospital



and not transferring it. To achieve this, a mathematical model
is trained in a hospital. Then, only the parameters of the model
are passed on, so that no conclusions can be drawn about the
sensitive patient data.

Of course, this procedure is highly dependent on the math-
ematical model that is used. It has been shown that stochastic
state-based models are very well suited for biological and
medical processes, since they can represent time-dependent
processes on the one hand and take into account the stochastic
nature of the processes under consideration on the other hand
[14].

The remainder of this paper is organized as follows. In
Section II, the stochastic state-based model used in this paper
is mathematically defined. In Section III, the iterative learning
algorithm is introduced in three different variants. In Section
IV, the third and most general variant of the iterative algorithm
is evaluated using simulations. In Section V, the simulation
results are briefly discussed. Section VI concludes this work
and gives an outlook on future research.

II. STOCHASTIC STATE-BASED MODEL

The stochastic state-based model (SSM) used in this work
is similar to a classical stochastic Petri net (SPN) [15], which
means that it is a bipartite graph with two types of nodes:
Places and transitions. Each place contains a non-negative
number of tokens while transitions move tokens from their
input places to their output places. The delay between enabling
and firing of a transition is exponentially distributed.

In medical applications, Petri nets can be used in two
main ways. The first application is the modelling of states,
e.g. to represent the condition of a patient. The Places each
represent a state, while existing tokens indicate in which state
the patient is currently. The changes of states are then modeled
using transitions. In the second possible application, each place
stands for a substance, while the number of tokens in a par-
ticular place indicates the concentration of that substance. The
transitions of the Petri net then represent chemical reactions
in which educts are converted into products.

In the following, we will formally define SSMs. The places
are denoted by pi, 1 ≤ i ≤ P , and the transitions are denoted
by τj , 1 ≤ j ≤ T . The weight of the arc connecting pi with τj
is denoted as [Pre]i,j while the arc from τj to pi has weight
[Post]i,j . The incidence matrix is defined as A = Post−Pre ∈
NP×T

0 . It is possible that in a SPN a place is both input and
output place of a transition, in this case the SPN is called
impure and the matrix A does not describe the SPN uniquely.
For this reason, in this work we assume that the SPN does
not have this property and is therefore pure. The number of
tokens contained in a place pi is denoted as m(pi) and the total
marking is described by the vector [m(p1), . . . ,m(pP )]

T.
In the following, we address the following challenge. The

goal is to estimate the entries of A, i.e., the arc weights of the
SPN. The given data is a set of L measurements where for each
1 ≤ ` ≤ L a series of noisy markings (m̃)

(`)
k = m̃

(`)
1 , . . . , m̃

(`)
K`

is given. To consider data protection and privacy, we aim at
the learning process to be iterative, which means it consists

of L independent learning steps where in step ` only the data
(m̃)

(`)
k is available.

An important preliminary work is an algorithm called
likelihood-based decision-aided adaptive gradient descent
(LB-DAAGD) proposed in [16] and [17] that solves the
problem for L = 1. For L > 1 an iterative learning approach
must be used. For this purpose the algorithm mentioned above
will be adapted.

III. ITERATIVE ALGORITHM

The algorithm taken from [17] is based on a state space
formulation. Given the matrix A that describes the topology
of the SPN, we consider the state equation

mk+1 = mk +A · uk (1)

where mk is the state at step k, uk ∈ {0, 1}T is the firing
vector that states which transition fires at step k and mk+1 is
the new state of the system. The goal of the algorithm is to
find an estimation of matrix A. Starting from an initial matrix
Â0, this gradient descent algorithm computes a sequence of
approximations Âk of the matrix A on which the system
is based. The mean square error of the predicted status at
the current time serves as the objective function. The update
equation then looks like this:

Âk+1 = Âk − µ · (m̂k+1 − m̃k+1) · uTk . (2)

In each update step, only the current and subsequent state
of the system are required. We want to exploit this iterative
nature of the algorithm in the following.

For this purpose we consider several hospitals that want
to jointly train a model of a biological system. However,
due to data protection regulations and the need to protect
the privacy of patients, no patient data may be exchanged
between hospitals. Classical machine learning approaches that
require all training data at once during the training phase
would not succeed in this task. In the following, we present
three concepts how the mentioned incremental algorithm can
be used for our application.

A. Sequential Approach

In the use case of training models in hospitals, the iterative
approach is as follows: A hospital collects data from patients
and locally trains a mathematical model. The final model and
the errors measured during the training phase are passed on
to the next hospital. It is then no longer possible to draw
conclusions about the data originally collected in the first
hospital, which means that the data protection and privacy
of the patients are fulfilled. Now, the second hospital can start
training the model further. The reason that this is possible is
because the algorithm in [17] works incrementally by nature
and does not, like other approaches, need all training data at
once. The general procedure is shown in Figure 1.

Formally, initially for ` = 1 the LB-DAAGD algorithm is
executed using the data (m̃)

(1)
k . The result is an estimation

Â(1) of the incidence matrix A of the SSM. Note that the
dimension of Â(1) is not necessarily (P ×T ), as the algorithm
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Fig. 1. Incremental learning of a model A in different hospitals

Measure data

�

Train model

Measure data

Combine models

Train model

�

Measure data

Train model

Fig. 2. Incremental learning in different hospitals with parallel training

may not detect some transitions or may detect some transitions
more than once. Next, the algorithm is executed again with
data (m̃)

(2)
k , where Â(1) is used as the start matrix and so on.

Finally, a matrix Â(L) is computed, which has been trained
with all data without needing all data at once. A pseudo code
is shown in Algorithm 1.

Algorithm 1: Incremental Parameter Estmation: Se-
quential

Result: Matrix Â(L)

Â(0) = empty matrix;
for ` ∈ {1, . . . , L} do

Â(`) = Result of LB-DAAGD starting with Â(`−1)

and data (m̃)
(`)
k

end

B. Sequential Approach with Parallel Learning

An advantage of the sequential approach is that it is very
simple and already implicitly contained in the LB-DAAGD.
One drawback is that parallel learning is not possible. If two
hospitals train a model at the same time, from which hospital
would a third hospital request the model to continue training
it? To solve this problem, we present a method to combine
several models into one. The general procedure is shown in
Figure 2.

First, we show how to find similar transitions in a model
and merge them into a single one.

1) Merging similar transitions: In the learning process it
can happen that a transition is recognized more than once
due to inaccurate data or poorly selected learning parameters.

When joining several models, it can also be useful to first
copy the learned transitions from all models. As a result,
matrix Â may contain several columns describing the same
transition. Afterwards similar columns can be merged into a
single column. We consider two columns v1, v2 ∈ RP to be
similar if ||v1 − v2||∞ < d for some parameter d > 0. The
parameter d depends on the underlying system. For example,
if the entries of A are known to be integers, d = 1− ε for a
small ε is a reasonable choice, because two different transitions
v1, v2 should differ in at least one component, which implies
||v1 − v2||∞ ≥ 1.

As soon as a model now contains similar transitions, i.e., the
corresponding matrix A contains a set S of similar columns,
these can be removed and replaced their average 1

|S|
∑

v′∈S v
′.

2) Merging different models: If several already trained
models are available, it makes sense to first combine them into
a single model and then to continue training this model. A way
to do this is to arrange all the columns of the corresponding
matrices into a single large matrix. If the different models
were all similarly well trained, then each transition should be
represented by multiple columns. These columns should be
similar in the sense of the similarity defined above and can
therefore be merged. In this way, a model is created in which
each transition occurs only once and can now be trained with
the new data. A pseudo code for merging several models is
shown in Algorithm 2.

Algorithm 2: Merge different models

Result: Matrix Â
Input: Different models Â1, . . . , Âk;
Â = concatenate(Â1, . . . , Âk);
while Â contains similar columns do

S = set of similar columns of Â;
remove all columns in S from Â;
add 1

|S|
∑

v′∈S v
′ to Â;

end

C. Central Storage Approach

The approaches presented in III-A and III-B provide the
ability to train a model without a large public training data
set. To this end, the model was transferred to hospitals and
trained locally, taking data protection and privacy into account.
However, there are also aspects that have not been considered
so far. How can it be ensured that the model does not
deteriorate during training? How can it be guaranteed that
a model is not trained several times with the same data?
These problems can be solved through supervised incremental
learning. For this purpose, a central storage unit manages the
model. When a hospital has collected new data, it requests
the current model, trains it, and returns the modified model
and information about the measured error values during the
training phase. An overview of the procedure is shown in
Figure 3. This approach offers many advantages. On the one
hand, the central unit can carry out version control. This
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Fig. 3. Incremental learning in different hospitals with central storage

ensures that it is always clear which model was trained with
which data. Another great advantage is that it is possible to
check how the models develop over time by monitoring the
error values of the single training phases. In a further step,
the current model could be sent to all participating hospitals
to check how well it matches all previously collected data.
Another approach to ensure the quality of the models could be
to carry out anomaly detection to check, for example, whether
individual hospitals provide bad data.

IV. SIMULATION RESULTS

In this section, we validate the central storage approach
using simulations. As described in the previous section, this
approach is the most promising and also the most general
of the presented approaches, since the central memory can
manage the trained models in any desired way. In the following
simulations, the central memory unit will store all trained
models as a list and always output the most recent model
for training. In fact, this procedure effectively is the same as
the first approach plus version control.

We use a predefined stochastic Petri net, which was al-
ready used in [17] for algorithm evaluation. The stochastic
Petri net originally comes from [14] and models a circadian
clock model. Although the actual use case for our algorithm
is supposed to be sepsis, in this early phase of algorithm
development it makes sense to investigate a well-known Petri
net instead of the not yet fully understood process of sepsis.
We carry out a total of three different simulation and training
settings. Each setting is run 50 times to hide the effects of
the stochastic nature of the model. Setting A simulates the
case that the algorithm is executed in a single hospital with
sufficient data volume. In setting B we simulate that in a single
hospital not enough data is available. Setting C deals with the
case that the individual hospitals have measured exactly the
same amount of data as in setting B, but this time the model
is trained incrementally in 20 hospitals one after the other.

A. Enough training data

In this subsection, we consider the case where there is
enough training data to train the model sufficiently well for
L = 1, so there is just one training step. A run of the algorithm
consists of the following steps:

1) Simulate the Petri net until 5000 firings of tranisitions
occured.

2) Train the model with these data.
3) Calculate coefficient Mean Square Error (MSE) and the

number of detected transitions of each learning step.
Fig. 4 shows the results for this case.

Fig. 4. Training with a sufficient amount of 5000 data points

B. Insufficient data

In this subsection, we consider the case where there is
insufficient training data to train the model sufficiently well
for L = 1. This setting corresponds to the case that too little
suitable data is available in a publicly accessible database.
Again we simulate the given Petri net, but this time only until
250 data points are simulated.

Simulations have shown that due to the fact that the sim-
ulation always starts with the same initial marking m0, the
markings m0, . . . ,m249 are quite similar for the different runs.
This is because with this small number of firings the stochastic
nature of the model does not come into play enough. For this
reason, we ran two different simulations: One was using the
markings m0, . . . ,m249 and the other was using the markings
mn−250, . . . ,mn−1 for a randomly chosen n > 250.

A run of the algorithm basically consists of the same steps
as in setting 1. The results are shown in Fig. 5.

C. Incremental training with small batches

In this subsection, we use the new approach of incremental
learning. For this purpose, 20 batches are generated in inde-
pendent simulations from 250 data points each. The model is
then trained with the individual batches one after the other,
whereby it only has access to one batch at a time. This



Fig. 5. Training with an insufficient amount of 250 data points

corresponds to local learning in a hospital without passing on
the data. The results are shown in Fig. 6. The dashed orange
lines show the steps where a new batch is used.

Fig. 6. Incremental training with 20 batches of 250 data points each

V. DISCUSSION

In this section, we briefly discuss the simulation results
presented in Section IV. Fig. 4 shows the results of the
algorithm being executed with a sufficient amount of 5000
data points. The mean squared error of the entries of the
reconstructed incidence matrix converges to a low level and
the algorithm detects around 19 of the 20 transitions of the
underlying Petri net in average. The fact that not all transitions
are recognized in all runs can be explained by the fact that
there are single transitions in the Petri net that almost never
fire and therefore cannot be detected reliably.

However, the plots presented in Fig. 5 show that the
algorithm cannot reliably reconstruct the model if there are
too few data points, which was to be expected. Although the
MSE is falling, it is not converging noticeably. In addition,
several transitions are not detected because they fire barely or
not at all in the too short observed time period. This behavior
is typical for machine learning algorithms that receive too little
training data.

The results presented in Fig. 6 were obtained through the
incremental approach. Compared to Fig. 4 there is barely any
difference in the plots. This clearly shows that incremental
learning in our case with several small data sets works just as
well as model learning with one large data set.

The fact that Fig. 4 and 6 do not show exactly the same plots
is due to the fact that the data were simulated stochastically
for each training. Simulating the Petri nets 50 times eliminates
the significant outliers, but does not produce exactly the same
result.

VI. CONCLUSION

In this paper, we have presented a method to recover the
parameters of stochastic Petri nets in an incremental way from
measured data. Our main contributions were: (1) We have
extended the algorithm from [17] and adapted it for incre-
mental applications, (2) we have developed several designs
of the algorithm, and (3) we have shown through simulations
that the most general version of our incremental algorithm
performs as well as the algorithm that has a large database
available. More specifically, on the one hand, the simulations
have shown that too small data sets alone are not sufficient
to train the model sufficiently well for the case that only one
data source is available. On the other hand, it is sufficient to
use several small data sets incrementally one after the other
for training. In this way, the learning algorithm is no longer
dependent on large publicly accessible data sets. Instead, the
required data can be collected and used locally, for example in
hospitals, without violating privacy and data protection. Future
research includes further testing of the algorithm with patient
data measured in hospitals. Furthermore, it is an open problem
how to estimate the kinetic parameters of SPN incrementally
based on measured data.
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